Unidentified Aerial Phenomenon: Airliner Has A Near Collision With A UAP

I find this fascinating. Dr. Richard F. Haines, is the Chief Scientist for the National Aviation Reporting Center on Anomalous Phenomena (NARCAP). His research focuses on airline sightings, airline safety, and these strange aerial mysteries. Dr. Haines goes into quite comprehensive detail about military/civilian pilot sightings, electromagnetic interference effects and the 3400 actual unknown reports collated from aviation professionals, civilian and military. Here’s one example of a close encounter over Scotland.


Glasgow, Scotland Airport – 12-21-2012

An airbus with 220 passengers came very close to a collision with a UAP as the plane began to approach the airport for a landing. The plane was at 3,500 ft. when it spotted a ‘blue and yellow’ UAP.

The unknown flying object passed just under the plane at 13 miles from the airport. The pilot said that they only avoided the crash by some 10 seconds.

After receiving details of the event from the crew, UK Airprox Board proceeded to investigate the case. They could not identify the object in question, and the UAP did not register on radar.

The pilot was clearly shocked and reported that there had been a ‘high’ risk of collision following the incident on December 2 last year. He told his control tower: ‘We just had something pass underneath us quite close. Have you got anything on in our area?’

Nothing Seen on Radar

Not only did the object not show up on radar, but no other vehicles were in the area at the time. Neither one of the crew members had time to react to the sighting, it happened so quickly. The fact that there was no collision was simply a stroke of luck.

Both pilots described the object as blue and yellow (or silver) in color with a small frontal area, and it was “bigger than a balloon.” Even outside of official channels, no other investigators could solve the case.

They wrote: The controller stated that he was not talking to anyone else in that area and that nothing was seen on radar. Search action was taken with no result and the A320 pilot stated his intention to file an Airprox report.


This is a transcript of what the A320 pilot told the control tower.

A320: ‘Glasgow Approach [A320 C/S]’ Air Traffic Control: ‘[A320 C/S] pass your message’

A320: ‘Er yeah we just had something pass underneath us quite close and nothing on TCAS have you got anything on in our area’
Control: ‘Er negative er we’ve got nothing on er radar and we’re n-not talking to any traffic either’

A320: ‘Er not quite sure what it was but it definitely er quite large and it’s blue and yellow’
Control: ‘OK that’s understood er do you have a an estimate for the height’

A320: ‘Maybe er yeah we were probably about four hundred to five hundred feet above it so it’s probably about three and a half thousand feet.  ‘… we seemed to only miss it by a couple of hundred feet it went directly beneath us… wherever we were when we called it in; it was within about ten seconds’… couldn’t tell what direction it was going but it went right underneath us”‘
Control: ‘do you suspect it might have been a glider or something like that?’

A320: ‘well maybe a microlight… it just looked too big for a balloon.”

More from the Pilot

Shortly after the Airbus landed, the pilot gave additional information to the Glasgow Aerodrome Controller.

The pilot said: ‘We seemed to only miss it by a couple of hundred feet it went directly beneath us – wherever we were when we called it in it was within about ten seconds; couldn’t tell what direction it was going but it went right underneath us.’

Asked if he thought it was a glider, the pilot replied: ‘well maybe a microlight – it just looked too big for a balloon.’

The board immediately ruled out anything like a glider.

The board initially considered likely candidates for the untraced aircraft. The A320 crew had not been able to assimilate any information regarding the form of the untraced aircraft in the fleeting glimpse they had, reporting only a likely colour, it said.

Members were of the opinion that, in the absence of a primary radar return, it was unlikely that the untraced aircraft was a fixed-wing or rotary-wing aircraft or man-carrying balloon.

It was considered that a meteorological balloon would be radar significant and unlikely to be released in the area of the Airprox.

A glider could not be discounted, but it was felt unlikely that one would be operating in that area, both due to the constrained airspace and the lack of thermal activity due to the low temperature.

Similarly, The board considered that a hang-glider or para-motor would be radar significant and that conditions precluded them, as they did para-gliders or parascenders.

Members were unable to reach a conclusion as to a likely candidate for the conflicting aircraft and it was therefore felt that the Board had insufficient information to determine a cause or risk.


Courtesy of Billy Booth, About.com Guide

I’ve Seen Through The Looking Glass, Outside The Fishbowl

Post to Twitter Post to Facebook Post to LinkedIn Post to Reddit Post to StumbleUpon

Unidentified Aerial Phenomenon – My UAP Report With Drawings – Updates 1 And 2

Report First Page

Report Second Page

Drawing 1

Drawing 2

Update Drawing 1

Update Drawing 2

Almost What It Looked Like

It looked something like this except the lights were all the same color in my case.

Circle of lights

UPDATE 1 – I just found a video on YouTube and edited out this short video but I couldn’t upload it (Still a newbie), so here is a screencap from it. It’s almost identical, the traffic, at night, but my sighting was in winter. Click on the picture for a larger image.


UPDATE 2I Learned How To Edit A Video Clip I Downloaded Off Of The Internet.

Here is a clip which resembled my experience almost exactly. (Screencap Above)

Windows Media – Circle Of Lights

MP4 – Circle Of Lights

Here is a photo I found which is almost identical to my sighting. It’s from the 80’s also. http://www.cufos.org/Almost

I’ve seen through the looking glass, outside the fishbowl


Post to Twitter Post to Facebook Post to LinkedIn Post to Reddit Post to StumbleUpon

Unidentified Aerial Phenomenon: The Alan Godfrey Close Encounter Experience, November 28, 1980

Here is another fascinating, well documented, multiple witness, Close Encounter Of The Second Kind, including six police officers!

In November and December 1980, the eastern side of Britain was experiencing a major UAP sighting wave. There were chases of UAPs by police cars, near the coast, an Unidentified Aerial object that overflew an oil rig in the North Sea, and the wave culminated in the famous events on the East Anglian coast at Rendlesham Forest.

Just a month before these landings beside those NATO air bases, one of the most impressive close encounter cases took place in the small Penninemill town of Todmorden, West Yorkshire, right in the centre of Britain’s most active window area known locally as “UFO Alley”.

Police Constable Alan Godfrey was on patrol on the night of 28 November 1980. Just before dawn he drove along Burnley Road on the edge of Todmorden looking for some cows that had been reported missing. They were only found after sun-up, mysteriously relocated in a rain-soaked field without hoof marks to indicate their passage.

Giving up his nocturnal hunt, Godfrey was about to go back to base to sign off duty when he saw a large mass a few hundred yards ahead. At first, he thought it was a bus coming towards him that took workers to their jobs in town and that he knew passed about 5:00 a.m.

But as he approached, he realized that it was something very strange. It was a fuzzy oval that rotated at such speed and hovered so low over the otherwise deserted highway that it was causing the bushes by the side to shake.

The police officer stopped, propped onto his windscreen a pad that was in the patrol car to make sketches of any road accidents, and drew the UAP. Then there was a burst of light, and the next thing he knew he was driving his car again, further along Burnley Road, with no sign of the phenomenon.

Godfrey turned around and examined the spot where the object had hovered. The road was very wet as it had rained heavily earlier in the night. But just at this one location was a circular patch where the roadway had been dried in a swirled pattern. Only when back at the police station did he realise that it was a little later than he had expected – although any missing time was probably no greater than 15 minutes from estimates later taken on site.

Concerned as to possible ridicule, Godfrey at first chose not to make an official report, but changed his mind later that day when he discovered he was not alone. After breakfast that morning, a driver who had been on Burnley Road three miles further out at Cliviger reported seeing a brilliant white object and contacted Todmorden police.

The time matched that of Alan Godfrey’s. Furthermore, a police patrol from an adjacent force (Halifax) had been engaged in a stake out for stolen motorcycles on the moors of the Calder Valley and had witnessed a brilliant blue-white glow descending into the valley towards Todmorden shortly before Godfrey experienced his close encounter. Their story, when it reached Todmorden police station, formed a second match.

Encouraged by this news Godfrey filed an official report, but was surprised when police chose to release the story to the local newspaper the following week. From here, UFOlogists discovered the case and a lengthy investigation was mounted by a Manchester-based UFO group.

Although Alan Godfrey had no further conscious recall of the missing time, he did have increasingly confused memory of the sequence of events surrounding the sighting (with an unexplained image of seeing himself outside the car during the sighting). There was also puzzling physical evidence.

His police-issue boots were split on the sole, as if he had been dragged along the floor and they had caught on something.

Courtesy of http://www.ufocasebook.com/

Check out these two short videos about this well documented Close Encounters Of The Second Kind

Part 1

Part 2

I’ve Seen Through The Looking Glass, Outside The Fishbowl



Post to Twitter Post to Facebook Post to LinkedIn Post to Reddit Post to StumbleUpon

Unidentified Aerial Phenomenon: Do We Live in a Computer Simulation Run by Our Descendants?

Researchers Say Idea Can Be Tested.

A decade ago, a British philosopher put forth the notion that the universe we live in might in fact be a computer simulation run by our descendants. While that seems far-fetched, perhaps even incomprehensible, a team of physicists at the University of Washington has come up with a potential test to see if the idea holds water.

The concept that current humanity could possibly be living in a computer simulation comes from a 2003 paper published in Philosophical Quarterly by Nick Bostrom, a philosophy professor at the University of Oxford. In the paper, he argued that at least one of three possibilities is true:

•The human species is likely to go extinct before reaching a “posthuman” stage.

•Any posthuman civilization is very unlikely to run a significant number of simulations of its evolutionary history.

•We are almost certainly living in a computer simulation.

He also held that “the belief that there is a significant chance that we will one day become posthumans who run ancestor simulations is false, unless we are currently living in a simulation.”

With current limitations and trends in computing, it will be decades before researchers will be able to run even primitive simulations of the universe. But the UW team has suggested tests that can be performed now, or in the near future, that are sensitive to constraints imposed on future simulations by limited resources.

Currently, supercomputers using a technique called lattice quantum chromodynamics and starting from the fundamental physical laws that govern the universe can simulate only a very small portion of the universe, on the scale of one 100-trillionth of a meter, a little larger than the nucleus of an atom, said Martin Savage, a UW physics professor.

Eventually, more powerful simulations will be able to model on the scale of a molecule, then a cell and even a human being. But it will take many generations of growth in computing power to be able to simulate a large enough chunk of the universe to understand the constraints on physical processes that would indicate we are living in a computer model.

However, Savage said, there are signatures of resource constraints in present-day simulations that are likely to exist as well in simulations in the distant future, including the imprint of an underlying lattice if one is used to model the space-time continuum.

The supercomputers performing lattice quantum chromodynamics calculations essentially divide space-time into a four-dimensional grid. That allows researchers to examine what is called the strong force, one of the four fundamental forces of nature and the one that binds subatomic particles called quarks and gluons together into neutrons and protons at the core of atoms.

“If you make the simulations big enough, something like our universe should emerge,” Savage said. Then it would be a matter of looking for a “signature” in our universe that has an analog in the current small-scale simulations.

Savage and colleagues Silas Beane of the University of New Hampshire, who collaborated while at the UW’s Institute for Nuclear Theory, and Zohreh Davoudi, a UW physics graduate student, suggest that the signature could show up as a limitation in the energy of cosmic rays.

In a paper they have posted on arXiv, an online archive for preprints of scientific papers in a number of fields, including physics, they say that the highest-energy cosmic rays would not travel along the edges of the lattice in the model but would travel diagonally, and they would not interact equally in all directions as they otherwise would be expected to do. “This is the first testable signature of such an idea,” Savage said.

If such a concept turned out to be reality, it would raise other possibilities as well. For example, Davoudi suggests that if our universe is a simulation, then those running it could be running other simulations as well, essentially creating other universes parallel to our own.

“Then the question is, ‘Can you communicate with those other universes if they are running on the same platform?’” she said.

I’ve seen through the looking glass, outside the fishbowl


Post to Twitter Post to Facebook Post to LinkedIn Post to Reddit Post to StumbleUpon

Unidentified Aerial Phenomenon: Future Science by Dr. Michio Kaku

Theoretical physicist and best selling author Dr. Michio Kaku discussed where science is taking us over the next century, and presented revolutionary developments in medicine, computers, quantum physics, and space travel. He pointed to four areas which will propel the evolution of science over the next 100 years: biotechnology, artificial intelligence, nanotechnology, and telecommunications. To that end, he surmised that someone from the year 2100 will be able to move things with their mind, possess “near perfect,” ageless bodies, travel via flying vehicles propelled by super magnets, and have the ability to create a variety of unique creatures using genetics. “We’re going to become the Gods that we once feared and worshipped,” Kaku said.

One advancement which he foresees arriving in the “near future” is a form of contact lens which will be connected to the Internet. This “augmented reality,” Kaku said, would allow for scenarios like being able to know all about a person as soon as you meet them and having subtitles printed beneath their face if they are speaking in a foreign language. He noted that such a device would be particularly popular for artists, since they could “conjure up new worlds, because it is in your contact lens.” Additionally, it would also provide a boon for industries like architecture and tourism as well as the military, who are well on their way to designing an eye piece with these specifications. “Virtual reality is for children,” he quipped, “but augmented reality is for adults, because it will help us work, play, and meet people.”

Kaku also detailed how “programmable matter” is leading towards a world where shape shifting could become a reality. He explained that, by creating a charged chip that is the size of a grain of sand, scientists could then program the tiny particles to stick to each other in a myriad of ways. Presently, the chips are being used to create simple shapes, but, in time, they could be used to construct more complex structures. “In the future,” he envisioned, “we could create an entire city with the push of a button.” While such advancements may sound farfetched, Kaku stressed that these forecasts come from his conversations with cutting edge researchers. “I’m not a science fiction writer, I’m a scientist,” he said, “and I’ve interviewed my colleagues and they tell me stories you wouldn’t believe about what’s possible in the future.”

I’ve seen through the looking glass, outside the fishbowl

T. Blank

Post to Twitter Post to Facebook Post to LinkedIn Post to Reddit Post to StumbleUpon

Unidentified Aerial Phenomenon: Physics of Type I, II, and III Civilizations: How advanced could they possibly be?

 ”There are more stars in the Universe than there are grains of sand on all the beaches on Earth”    Carl Sagan

 ”The Universe is not only queerer than we suppose, but queerer than we CAN suppose.”                    J. B. S. Haldane

Ever since I was a child I’ve been fascinated about the nature that surrounded our small northern town, that we grew up in. I would explore the woods, the river, the lakes and the wildlife in the country, summer and winter. The one thing that totally fascinated me was the night sky. Up north away from city lights, the amount of stars literally filled the whole sky from horizon to horizon. One could easily see the band of stars of our galaxy, The Milky Way. And on many occasions The Aurora Borealis, The Northern Lights, were so awe aspiring to watch as these green curtains of charged particles that appeared to be waving like a flag were bright enough to lighten up the night as if the moon was out. In school, science was my favorite subject especially about The Universe.  As I grew older I started reading anything about the Cosmos. The more I learned, the more fascinated I became. I read science fiction books and watched my favorite TV show, “My Favorite Martian”. If you’re my age than you might remember it also. Hell, at my age I’m glad I remember anything at all. ;)

In 1969 I watched Neil Armstrong’s first steps on the moon with my dad recording this historic event. I was hooked! We moved to Toronto in 1970 and I never saw the full glory of the heaven’s again. However, even living in the city whenever I had a chance, I always looked up at the night sky even when taking out the garbage. I loved going camping including outdoor weekend incursions at motor sporting events and still always looked up at the night sky. Over the years I’ve become somewhat of a jack of all trades when it comes to space science. I’ve read numerous books and watched who knows how many documentaries about the sciences, as in geology, meteorology, oceanography, life sciences, things concerning the origin, structure, and physical phenomena of the earth and especially this vast Universe. Over the decades I watched and experienced the fascinating new discoveries our scientists unraveled in physics and astronomy. I’ve known for a long time how vast and ancient this Cosmos is that we’re in.

Than came The Hubble Space Telescope. WOW!, I was floored when “the deep field” pictures revealed the enormous size of the universe which borders on incomprehension. The Universe is also ancient, 13.7 billion years. Our Solar System is 4.3 billion years old. If memory serves, the ten most common elements in the universe are also found on our planet Earth. Hydrogen is the most abundant element in the known Universe, helium is second and there appears to be water everywhere. As Carl Sagan once said, “we’re all made of star stuff”. All the fundamental elements of producing life make up The Universe and the Earth as well. They were creating from dying, exploding stars. Since I’m not a scientist with a reputation to protect, I can make this bold statement. My logic dictates to me that because everything in the known Cosmos is made of the same star stuff, including life, than The Universe is obviously teeming with life! Life is extremely tenacious. Just look at our own Earth for example. Life manages to grow and flourish in any nook or cranny from the frozen ice in the Arctic to the hellish deep ocean hydrothermal vents with no sunlight, extreme pressures and heat, up to 400°C (750°F). This tells me life is everywhere in the Cosmos and most likely even in our own Solar System.

Other galaxies, stars and planets were around billions of years before our star with its solar system was even born! So again, logic dictates that life started everywhere in space and some evolved into intelligent, reasoning species thousands, millions and even billions of years before our tiny Solar System even existed. They had a hell of a head start I’d say. They would have evolved so far ahead of us on the evolutionary scale that if we ever encountered them would we even be able to recognize it for what it is? I think not. Is a simple organism aware that it’s Universe is a drop of rain water, on a leaf, in a garden, in your backyard? Does the true nature of Unidentified Aerial Phenomenon represent some kind of numerous life forms on different levels of evolution, existing all around us that we’re not aware of? I’m convinced it is. Something our science cannot explain or even comprehend yet.

I’ve come across a very interesting article from my favorite, colorful theoretical physicist, Dr. Michio Kaku.http://mkaku.org/home/  I thought I’d share it as it makes a lot of sense to me. Enjoy.

“The Physics of Extraterrestrial Civilizations: How advanced could they possibly be?”

The late Carl Sagan once asked this question, “What does it mean for a civilization to be a million years old? We have had radio telescopes and spaceships for a few decades; our technical civilization is a few hundred years old… an advanced civilization millions of years old is as much beyond us as we are beyond a bush baby or a macaque.”

Although any conjecture about such advanced civilizations is a matter of sheer speculation, one can still use the laws of physics to place upper and lower limits on these civilizations. In particular, now that the laws of quantum field theory, general relativity, thermodynamics, etc. are fairly well-established, physics can impose broad physical bounds which constrain the parameters of these civilizations.

This question is no longer a matter of idle speculation. Soon, humanity may face an existential shock as the current list of a dozen Jupiter-sized extra-solar planets swells to hundreds of earth-sized planets, almost identical twins of our celestial homeland. This may usher in a new era in our relationship with the universe: we will never see the night sky in the same way ever again, realizing that scientists may eventually compile an encyclopedia identifying the precise co-ordinates of perhaps hundreds of earth-like planets.

Today, every few weeks brings news of a new Jupiter-sized extra-solar planet being discovered, the latest being about 15 light years away orbiting around the star Gliese 876. The most spectacular of these findings was photographed by the Hubble Space Telescope, which captured breathtaking photos of a planet 450 light years away being sling-shot into space by a double-star system.

But the best is yet to come. Early in the next decade, scientists will launch a new kind of telescope, the interferome try space telescope, which uses the interference of light beams to enhance the resolving power of telescopes.

For example, the Space Interferometry Mission (SIM), to be launched early in the next decade, consists of multiple telescopes placed along a 30 foot structure. With an unprecedented resolution approaching the physical limits of optics, the SIM is so sensitive that it almost defies belief: orbiting the earth, it can detect the motion of a lantern being waved by an astronaut on Mars!

The SIM, in turn, will pave the way for the Terrestrial Planet Finder, to be launched late in the next decade, which should identify even more earth-like planets. It will scan the brightest 1,000 stars within 50 light years of the earth and will focus on the 50 to 100 brightest planetary systems.

All this, in turn, will stimulate an active effort to determine if any of them harbor life, perhaps some with civilizations more advanced than ours.

Although it is impossible to predict the precise features of such advanced civilizations, their broad outlines can be analyzed using the laws of physics. No matter how many millions of years separate us from them, they still must obey the iron laws of physics, which are now advanced enough to explain everything from sub-atomic particles to the large-scale structure of the universe, through a staggering 43 orders of magnitude.

Physics of Type I, II, and III Civilizations

Specifically, we can rank civilizations by their energy consumption, using the following principles:

1) The laws of thermodynamics. Even an advanced civilization is bound by the laws of thermodynamics, especially the Second Law, and can hence be ranked by the energy at their disposal.

2) The laws of stable matter. Baryonic matter (e.g. based on protons and neutrons) tends to clump into three large groupings: planets, stars and galaxies. (This is a well-defined by product of stellar and galactic evolution, thermonuclear fusion, etc.) Thus, their energy will also be based on three distinct types, and this places upper limits on their rate of energy consumption.

3) The laws of planetary evolution. Any advanced civilization must grow in energy consumption faster than the frequency of life-threatening catastrophes (e.g. meteor impacts, ice ages, supernovas, etc.). If they grow any slower, they are doomed to extinction. This places mathematical lower limits on the rate of growth of these civilizations.

In a seminal paper published in 1964 in the Journal of Soviet Astronomy, Russian astrophysicist Nicolai Kardashev theorized that advanced civilizations must therefore be grouped according to three types: Type I, II, and III, which have mastered planetary, stellar and galactic forms of energy, respectively. He calculated that the energy consumption of these three types of civilization would be separated by a factor of many billions. But how long will it take to reach Type II and III status?

Shorter than most realize.

Berkeley astronomer Don Goldsmith reminds us that the earth receives about one billionth of the sun’s energy, and that humans utilize about one millionth of that. So we consume about one million billionth of the sun’s total energy. At present, our entire planetary energy production is about 10 billion billion ergs per second. But our energy growth is rising exponentially, and hence we can calculate how long it will take to rise to Type II or III status.

Goldsmith says, “Look how far we have come in energy uses once we figured out how to manipulate energy, how to get fossil fuels really going, and how to create electrical power from hydropower, and so forth; we’ve come up in energy uses in a remarkable amount in just a couple of centuries compared to billions of years our planet has been here … and this same sort of thing may apply to other civilizations.”

Physicist Freeman Dyson of the Institute for Advanced Study estimates that, within 200 years or so, we should attain Type I status. In fact, growing at a modest rate of 1% per year, Kardashev estimated that it would take only 3,200 years to reach Type II status, and 5,800 years to reach Type III status. Living in a Type I,II, or III civilization

For example, a Type I civilization is a truly planetary one, which has mastered most forms of planetary energy. Their energy output may be on the order of thousands to millions of times our current planetary output. Mark Twain once said, ”Everyone complains about the weather, but no one does anything about it.“ This may change with a Type I civilization, which has enough energy to modify the weather. They also have enough energy to alter the course of earthquakes, volcanoes, and build cities on their oceans.

Currently, our energy output qualifies us for Type 0 status. We derive our energy not from harnessing global forces, but by burning dead plants (e.g. oil and coal). But already, we can see the seeds of a Type I civilization. We see the beginning of a planetary language (English), a planetary communication system (the Internet), a planetary economy (the forging of the European Union), and even the beginnings of a planetary culture (via mass media, TV, rock music, and Hollywood films).

By definition, an advanced civilization must grow faster than the frequency of life-threatening catastrophes. Since large meteor and comet impacts take place once every few thousand years, a Type I civilization must master space travel to deflect space debris within that time frame, which should not be much of a problem. Ice ages may take place on a time scale of tens of thousands of years, so a Type I civilization must learn to modify the weather within that time frame.

Artificial and internal catastrophes must also be negotiated. But the problem of global pollution is only a mortal threat for a Type 0 civilization; a Type I civilization has lived for several millennia as a planetary civilization, necessarily achieving ecological planetary balance. Internal problems like wars do pose a serious recurring threat, but they have thousands of years in which to solve racial, national, and sectarian conflicts.

Eventually, after several thousand years, a Type I civilization will exhaust the power of a planet, and will derive their energy by consuming the entire output of their sun’s energy, or roughly a billion trillion trillion ergs per second.

With their energy output comparable to that of a small star, they should be visible from space. Dyson has proposed that a Type II civilization may even build a gigantic sphere around their star to more efficiently utilize its total energy output. Even if they try to conceal their existence, they must, by the Second Law of Thermodynamics, emit waste heat. From outer space, their planet may glow like a Christmas tree ornament. Dyson has even proposed looking specifically for infrared emissions (rather than radio and TV) to identify these Type II civilizations.

Perhaps the only serious threat to a Type II civilization would be a nearby supernova explosion, whose sudden eruption could scorch their planet in a withering blast of X-rays, killing all life forms. Thus, perhaps the most interesting civilization is a Type III civilization, for it is truly immortal. They have exhausted the power of a single star, and have reached for other star systems. No natural catastrophe known to science is capable of destroying a Type III civilization.

Faced with a neighboring supernova, it would have several alternatives, such as altering the evolution of dying red giant star which is about to explode, or leaving this particular star system and terraforming a nearby planetary system.

However, there are roadblocks to an emerging Type III civilization. Eventually, it bumps up against another iron law of physics, the theory of relativity. Dyson estimates that this may delay the transition to a Type III civilization by perhaps millions of years.

But even with the light barrier, there are a number of ways of expanding at near-light velocities. For example, the ultimate measure of a rockets capability is measured by something called “specific impulse” (defined as the product of the thrust and the duration, measured in units of seconds). Chemical rockets can attain specific impulses of several hundred to several thousand seconds. Ion engines can attain specific impulses of tens of thousands of seconds. But to attain near-light speed velocity, one has to achieve specific impulse of about 30 million seconds, which is far beyond our current capability, but not that of a Type III civilization. A variety of propulsion systems would be available for sub-light speed probes (such as ram-jet fusion engines, photonic engines, etc.)

How to Explore the Galaxy

Because distances between stars are so vast, and the number of unsuitable, lifeless solar systems so large, a Type III civilization would be faced with the next question: what is the mathematically most efficient way of exploring the hundreds of billions of stars in the galaxy?

In science fiction, the search for inhabitable worlds has been immortalized on TV by heroic captains boldly commanding a lone star ship, or as the murderous Borg, a Type III civilization which absorbs lower Type II civilization (such as the Federation). However, the most mathematically efficient method to explore space is far less glamorous: to send fleets of “Von Neumann probes” throughout the galaxy (named after John Von Neumann, who established the mathematical laws of self-replicating systems).

A Von Neumann probe is a robot designed to reach distant star systems and create factories which will reproduce copies themselves by the thousands. A dead moon rather than a planet makes the ideal destination for Von Neumann probes, since they can easily land and take off from these moons, and also because these moons have no erosion. These probes would live off the land, using naturally occurring deposits of iron, nickel, etc. to create the raw ingredients to build a robot factory. They would create thousands of copies of themselves, which would then scatter and search for other star systems.

Similar to a virus colonizing a body many times its size, eventually there would be a sphere of trillions of Von Neumann probes expanding in all directions, increasing at a fraction of the speed of light. In this fashion, even a galaxy 100,000 light years across may be completely analyzed within, say, a half million years.

If a Von Neumann probe only finds evidence of primitive life (such as an unstable, savage Type 0 civilization) they might simply lie dormant on the moon, silently waiting for the Type 0 civilization to evolve into a stable Type I civilization. After waiting quietly for several millennia, they may be activated when the emerging Type I civilization is advanced enough to set up a lunar colony. Physicist Paul Davies of the University of Adelaide has even raised the possibility of a Von Neumann probe resting on our own moon, left over from a previous visitation in our system aeons ago.

(If this sounds a bit familiar, that’s because it was the basis of the film, 2001. Originally, Stanley Kubrick began the film with a series of scientists explaining how probes like these would be the most efficient method of exploring outer space. Unfortunately, at the last minute, Kubrick cut the opening segment from his film, and these monoliths became almost mystical entities)

New Developments

Since Kardashev gave the original ranking of civilizations, there have been many scientific developments which refine and extend his original analysis, such as recent developments in nanotechnology, biotechnology, quantum physics, etc..

For example, nanotechnology may facilitate the development of Von Neumann probes. As physicist Richard Feynman observed in his seminal essay, “There’s Plenty of Room at the Bottom,” there is nothing in the laws of physics which prevents building armies of molecular-sized machines. At present, scientists have already built atomic-sized curiosities, such as an atomic abacus with Buckyballs and an atomic guitar with strings about 100 atoms across.

Paul Davies speculates that a space-faring civilization could use nanotechnology to build miniature probes to explore the galaxy, perhaps no bigger than your palm. Davies says, “The tiny probes I’m talking about will be so inconspicuous that it’s no surprise that we haven’t come across one. It’s not the sort of thing that you’re going to trip over in your back yard. So if that is the way technology develops, namely, smaller, faster, cheaper and if other civilizations have gone this route, then we could be surrounded by surveillance devices.”

Furthermore, the development of biotechnology has opened entirely new possibilities. These probes may act as life-forms, reproducing their genetic information, mutating and evolving at each stage of reproduction to enhance their capabilities, and may have artificial intelligence to accelerate their search.

Also, information theory modifies the original Kardashev analysis. The current SETI project only scans a few frequencies of radio and TV emissions sent by a Type 0 civilization, but perhaps not an advanced civilization. Because of the enormous static found in deep space, broadcasting on a single frequency presents a serious source of error. Instead of putting all your eggs in one basket, a more efficient system is to break up the message and smear it out over all frequencies (e.g. via Fourier like transform) and then reassemble the signal only at the other end. In this way, even if certain frequencies are disrupted by static, enough of the message will survive to accurately reassemble the message via error correction routines. However, any Type 0 civilization listening in on the message on one frequency band would only hear nonsense. In other words, our galaxy could be teeming with messages from various Type II and III civilizations, but our Type 0 radio telescopes would only hear gibberish.

Lastly, there is also the possibility that a Type II or Type III civilization might be able to reach the fabled Planck energy with their machines (10^19 billion electron volts). This is energy is a quadrillion times larger than our most powerful atom smasher. This energy, as fantastic as it may seem, is (by definition) within the range of a Type II or III civilization.

The Planck energy only occurs at the center of black holes and the instant of the Big Bang. But with recent advances in quantum gravity and superstring theory, there is renewed interest among physicists about energies so vast that quantum effects rip apart the fabric of space and time. Although it is by no means certain that quantum physics allows for stable wormholes, this raises the remote possibility that a sufficiently advanced civilizations may be able to move via holes in space, like Alice’s Looking Glass. And if these civilizations can successfully navigate through stable wormholes, then attaining a specific impulse of a million seconds is no longer a problem. They merely take a short-cut through the galaxy. This would greatly cut down the transition between a Type II and Type III civilization.

Second, the ability to tear holes in space and time may come in handy one day. Astronomers, analyzing light from distant supernovas, have concluded recently that the universe may be accelerating, rather than slowing down. If this is true, there may be an anti-gravity force (perhaps Einstein’s cosmological constant) which is counteracting the gravitational attraction of distant galaxies. But this also means that the universe might expand forever in a Big Chill, until temperatures approach near-absolute zero. Several papers have recently laid out what such a dismal universe may look like. It will be a pitiful sight: any civilization which survives will be desperately huddled next to the dying embers of fading neutron stars and black holes. All intelligent life must die when the universe dies.

Contemplating the death of the sun, the philosopher Bertrand Russel once wrote perhaps the most depressing paragraph in the English language: “…All the labors of the ages, all the devotion, all the inspiration, all the noonday brightness of human genius, are destined to extinction in the vast death of the solar system, and the whole temple of Mans achievement must inevitably be buried beneath the debris of a universe in ruins…”

Today, we realize that sufficiently powerful rockets may spare us from the death of our sun 5 billion years from now, when the oceans will boil and the mountains will melt. But how do we escape the death of the universe itself?

Astronomer John Barrows of the University of Sussex writes, “Suppose that we extend the classification upwards. Members of these hypothetical civilizations of Type IV, V, VI, … and so on, would be able to manipulate the structures in the universe on larger and larger scales, encompassing groups of galaxies, clusters, and superclusters of galaxies.” Civilizations beyond Type III may have enough energy to escape our dying universe via holes in space.

Lastly, physicist Alan Guth of MIT, one of the originators of the inflationary universe theory, has even computed the energy necessary to create a baby universe in the laboratory (the temperature is 1,000 trillion degrees, which is within the range of these hypothetical civilizations).

Of course, until someone actually makes contact with an advanced civilization, all of this amounts to speculation tempered with the laws of physics, no more than a useful guide in our search for extra-terrestrial intelligence. But one day, many of us will gaze at the encyclopedia containing the coordinates of perhaps hundreds of earth-like planets in our sector of the galaxy. Then we will wonder, as Sagan did, what a civilization a millions years ahead of ours will look like…

I’ve seen through the looking glass, outside the fishbowl


Post to Twitter Post to Facebook Post to LinkedIn Post to Reddit Post to StumbleUpon

How Large Is The Universe? A Lot Larger Than We Thought: An update

When I first posted this in 2013, three years ago, the Cosmos Has become even larger.

10 Times More Galaxies Than Scientists Thought!

More than a trillion galaxies are lurking in the depths of space, a new census of galaxies in the observable universe has found — 10 times more galaxies than were previously thought to exist.

An international team of astronomers used deep-space images and other data from the Hubble Space Telescope to create a 3D map of the known universe, which contains about 100 to 200 billion galaxies. In particular, they relied on Hubble’s Deep Field images, which revealed the most distant galaxies ever seen with a telescope.

Then, the researchers incorporated new mathematical models to calculate where other galaxies that have not yet been imaged by a telescope might exist. For the numbers to add up, the universe needs at least 10 times more galaxies than those already known to exist. But these unknown galaxies are likely either too
faint or too far away to be seen with today’s telescopes.

The image was taken by the Hubble Space Telescope and covers a portion of the southern field of the Great Observatories Origins Deep Survey (GOODS). This is a large galaxy census, a deep-sky study by several observatories to trace the formation and evolution of galaxies.

“It boggles the mind that over 90 percent of the galaxies in the universe have yet to be studied,” Christopher Conselice, a professor of astrophysics at the University of Nottingham in the U.K., who led the study, said in a statement. “Who knows what interesting properties we will find when we observe these galaxies with the next generation of telescopes.”

Looking far out into deep space also means looking back in time, because light takes a long time to travel across cosmic distances. During the study, Conselice and his team looked at parts of the universe up to 13 billion light-years away. Looking this far allowed the researchers to see partial snapshots of the evolution of the universe since 13 billion years ago, or less than 100 million years after the Big Bang.

They discovered that the early universe contained even more galaxies than it does today. Those distant galaxies were small and faint dwarf galaxies, they found. As the universe evolves, such galaxies merge together to form larger galaxies.

In a separate statement, Conselice said that the results are “very surprising as we know that, over the 13.7 billion years of cosmic evolution since the Big Bang, galaxies have been growing through star formation and mergers with other galaxies. Finding more galaxies in the past implies that significant evolution must have occurred to reduce their number through extensive merging of systems.”

Courtesy of Space.com

Universe has 2 trillion galaxies, astronomers say.


Hubble telescope images from deep space were collected over 20 years to solve the puzzle of how many galaxies the cosmos harbours.

The surprising find is based on 3D modelling of images collected the Hubble Space Telescope.

There are a dizzying 2 trillion galaxies in the universe, up to 20 times more than previously thought, astronomers reported on Thursday. The surprising finding, based on 3D modeling of images collected over 20 years by the Hubble Space Telescope, was published in the Astronomical Journal.

Scientists have puzzled over how many galaxies the cosmos harbors at least since US astronomer Edwin Hubble showed in 1924 that Andromeda, a neighboring galaxy, was not part of our own Milky Way. But even in the era of modern astronomy, getting an accurate tally has proven difficult.

To begin with, there is only part of the cosmos where light given off by distant objects has had time to reach Earth. The rest is effectively beyond our reach. And even within this “observable universe”, current technology only allows us to glimpse 10% of what is out there, according to the new findings.

“It boggles the mind that over 90% of the galaxies in the universe have yet to be studied,” commented Christopher Conselice of the University of Nottingham, who led the study. “Who knows what interesting properties we will find when we observe these galaxies with the next generation of telescopes?” he said in a statement.

Using deep space images from Hubble, Conselice and his team painstakingly converted them into 3D to measure the number of galaxies at different times in the history of the universe. The analysis reached back more than 13bn years – very near the time of the “Big Bang” thought to have given birth to the universe.

A galaxy is a system of millions or billions or stars, held together by gravity, with planetary systems within them. Using new mathematical models, the astronomers were able to infer the number of “invisible” galaxies beyond the reach of telescopes, leading to the surprising realisation that the vast
majority are too faint and far away to be seen.

When the universe was only a few billion years old, there were 10 times as many galaxies in a given volume of space as there are today, the findings suggest. This in turn suggests that “significant evolution must have occurred to reduce their number through extensive merging of systems”.

Courtesy of Theguardian.com

Posted by Nomad on

Post to Twitter Post to Facebook Post to LinkedIn Post to Reddit Post to StumbleUpon